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SUMMARY Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate
and destroy target cells. Members of the LCT family include Clostridioides difficile toxins
TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin
TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacte-
ria have been isolated from the blood, organs, and wounds of diseased individuals, and
LCTs have been implicated as the primary virulence factors in a variety of infections,
including C. difficile infection and some cases of wound-associated gas gangrene.
Clostridia express and secrete LCTs in response to various physiological signals. LCTs
invade host cells by binding specific cell surface receptors, ultimately leading to internal-
ization into acidified vesicles. Acidic pH promotes conformational changes within LCTs,
which culminates in translocation of the N-terminal glycosyltransferase and cysteine prote-
ase domain across the endosomal membrane and into the cytosol, leading first to cyto-
pathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs
in infection and disease, the mechanism of LCT intoxication, with emphasis on recent
structural work and toxin subtyping analysis, and the genomic discovery and characteriza-
tion of LCT homologues. We provide a comprehensive review of these topics and offer
our perspective on emerging questions and future research directions for this enigmatic
family of toxins.

KEYWORDS Clostridium difficile, large clostridial toxin, toxin, toxin-mediated diseases,
toxin-receptor interaction

INTRODUCTION

Clostridia are a polyphyletic class of anaerobes that are prolific producers of toxins.
Well-known clostridial toxins include pore-forming toxins, such as Clostridium per-

fringens epsilon toxin (Etx) (1), binary toxins, such as Clostridioides difficile binary toxin
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(CDT) (2), and large clostridial toxins (LCTs) (3). LCTs are a family of six bacterial exotox-
ins secreted by Gram-positive, spore-forming clostridial species. Members of the LCT
family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii tox-
ins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL.
LCTs were first grouped together as a family of related toxins on basis of their large
size (.200 kDa), similarities in primary structure (Table 1), and unusual ability to induce
profound changes in cell morphology (3). Members of the LCT family have been impli-
cated as the primary virulence factors in a variety of human and animal infections,
including C. difficile infection (CDI), some cases of wound-associated gas gangrene,
toxic shock syndrome, and severe soft tissue infections in injection drug users (4–7).

LCTs are single-chain multidomain polypeptides with similar gene organization,
regulation, and overall domain architecture. Clostridia express LCTs in response to vari-
ous environmental and physiological signals, enabling LCTs to infiltrate and ultimately
destroy eukaryotic cells to promote bacterial infection. Symptoms of infection are
thought to arise owing to the cytosolic delivery of the N-terminal glycosyltransferase
domain (GTD) through concerted actions of the cysteine protease domain (CPD), the
central translocation and receptor-binding domain (T domain) and combined repeat-
ing oligopeptide (CROP) (8) (Fig. 1). In brief, LCTs first bind target receptors on host
cells, and become internalized into vesicles. The internalized LCT-containing vesicles
subsequently become acidified. In response to acidic pH, conformational changes
occur within LCTs, triggering translocation of the glycosyltransferase and cysteine pro-
tease domain across the endosomal membrane and into the cytosol. The cysteine pro-
tease domain autocatalytically cleaves and releases the glycosyltransferase from the
rest of the polypeptide, freeing the glycosyltransferase to access membrane-tethered
Rho and Ras guanine triphosphatases (GTPases), leading first to cytopathic effects (cell
rounding) and later to cytotoxic effects (cell death).

Here, we provide a comprehensive review of the LCT family. We detail seminal con-
tributions spanning the 19th, 20th, and 21st centuries that have established LCTs as
potent poisons, highlight recent structural work and toxin subtyping analysis to pro-
vide a thorough understanding of LCT structure, function, diagnostic, and therapeutic
development, and discuss the burgeoning field of LCT homologue identification and
characterization. We end this review by providing our perspective on pressing ques-
tions and pertinent future research directions.

ROLE OF LCTs IN CLOSTRIDIAL INFECTION AND DISEASE
C. difficile, TcdA, and TcdB

C. difficile was first described by I. C. Hall and E. O’Toole in 1935 (9). During their
investigations of the intestinal microbiota of newborns, Hall and O’Toole isolated C. difficile
from the stools of healthy infants. The researchers found that cell-free supernatants of C. diffi-
cile cultures were lethal to a variety of animals (10), suggesting the presence of secreted factors
that were toxic toward animals. Hall and O’Toole named the bacterium Bacillus difficilis:
Bacillus for the rod-like morphology and difficilis for the difficulty in cultivating the anaerobic
bacterium. Since then, the bacterium formally known as B. difficilis has been renamed

TABLE 1 Sequence identity and similarity of LCT holotoxins

LCT

% sequence identity (% similarity)a

TcdA TcdB TcsH TcsL TcnA
TcdB 46 (66)
TcsH 77 (87) 48 (68)
TcsL 46 (66) 76 (88) 49 (70)
TcnA 31 (51) 30 (50) 32 (52) 31 (50)
TpeL 41 (61) 39 (60) 42 (61) 40 (61) 31 (51)
aSequence identity and similarity were calculated using Water (EMBOSS) local alignment. LCTs are from the
following strains: C. difficile VPI 10463, P. sordellii VPI 9048, C. novyi 19402, and C. perfringens JGS1495. Under
new subtyping analysis, TcdA and TcdB from C. difficile VPI 10463 are referred to as TcdA1 and TcdB1 (138).
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several times. First, to Clostridium difficile, then to Peptoclostridium difficile (11), and finally
to Clostridioides difficile in 2016 by Lawson et al. (12).

Because C. difficile was originally isolated from healthy infants, the bacterium was
considered a normal component of the intestinal flora in humans. In the 1970, J. G.
Bartlett was the first to determine that C. difficile was the causative agent of C. difficile
infection (CDI) (13–15). CDI is characterized by damage and injury of the colonic epi-
thelium, with clinical symptoms ranging from diarrhea to pseudomembranous colitis
and toxic megacolon (16). Bartlett’s work connected years of puzzling findings on anti-
biotic-associated colitis in guinea pigs and hamsters, first noted during animal studies
of penicillin during World War II, and the rapid increase of antibiotic-associated colitis
in hospitals during the 1950s, 60s, and 70s. In animal and human studies, Bartlett and
colleagues identified undescribed toxins in the stools of infected patients (14, 15). The
toxic components were later identified as TcdA, toxin C. difficile A, or simply toxin A/toxA,
and TcdB, toxin C. difficile B, or simply toxin B/toxB (17–22).

CDI is the leading cause of antibiotic-associated diarrhea in the developing world
(23), and in the United States alone, there are approximately a quarter of a million
cases of CDI annually, resulting in 12,800 deaths and attributable health care costs of
$1 billion (23). CDI is most prevalent in hospitalized elderly patients (.65 years) who
have recently taken antibiotics (24). In animals, antibiotic usage has also been identi-
fied a major risk factor for CDI (25). It has been hypothesized that antibiotic usage
wipes out the normal gut microflora, enabling C. difficile to colonize the gastrointesti-
nal tract, eventually leading to toxin production (26). Although C. difficile is considered

FIG 1 LCT domain architecture and mechanism of action. (A) Individual domains are colored as follows: glycosyltransferase domain (GTD) in
blue, cysteine protease domain (CPD) in yellow, translocation and receptor-binding domain (T domain) in red, and combined repeating
oligopeptide (CROP) in purple. (B) Schematic illustrating the major steps of LCT intoxication of host cells, using TcdB (PDB 6OQ5).
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a hospital-acquired infection, the epidemiology of CDI is changing, with increasing
reports of community-acquired CDI in populations without established risk factors (27).
Multiple reports have also identified C. difficile in livestock and in the food chain and
have suggested that the presence of C. difficile in the agricultural industry may provide
a reservoir for common community-acquired CDI (25, 28).

In animal models, TcdA and TcdB recapitulate the symptoms associated with CDI,
including disruption of tight junctions, epithelial cell death, and mucosal inflammation
(16), and are thus believed to be the major virulence factors in infection (16) (Table 2).
Furthermore, C. difficile strains lacking TcdA and TcdB are avirulent and nonpathogenic
(29, 30), and TcdA and TcdB levels correlate with the severity of C. difficile infection in
epidemic C. difficile strains (31, 32). It remains contentious whether TcdA or TcdB is the
major virulence factor in infection. In support of TcdB as the major virulence factor,
TcdA2 TcdB1 clinical isolates cause CDI in in humans (33, 34). Additionally, laboratory
TcdA2 TcdB1 strains cause CDI in animal models (29, 30, 35), and TcdB alone is directly
responsible for severe intestinal damage (36). In contrast, laboratory TcdA1 TcdB2

strains are attenuated in virulence compared to TcdA1 TcdB1 strains, and TcdA alone
is capable of only causing minimal intestinal damage in animal models (36). Recently,
the first ever TcdA1 TcdB2 clinical isolate was isolated from an individual with antibi-
otic-associated diarrhea (37). The existence of a TcdA1 TcdB2 clinical strain suggests
that TcdA may be capable of causing CDI, although it is not yet clear if TcdA can cause
more severe disease symptoms. Notably, hamsters infected with the TcdA1 TcdB2

strain did not recapitulate the clinical symptoms associated with human infection, sug-
gesting potential limitations of animal models in understanding and defining the role
of C. difficile toxins in human infection.

P. sordellii, TcsL, and TcsH

P. sordellii was first isolated by A. Sordelli in 1922 (5). Sordelli isolated the bacterium
from acute edematous human wound infections and named it Bacillus oedematic spor-
ogenes. The name of the bacterium was derived on the basis of shared features to
Bacillus oedematiens (presently known as C. novyi), which causes edema (fluid retention
and swelling), and Bacillus sporogenes, which has a similar rod-like morphology. To
avoid confusion with B. oedematiens and B. sporogenes, the bacterium was renamed
Bacillus sordellii in 1927, in honor of Sordelli (38), and later Clostridium sordellii (39, 40).
Recently, the bacterium was reclassified as a species of the genus Paeniclostridium, a
new closely related genus to Clostridium (41).

TcsL, toxin C. sordellii lethal, also known as lethal toxin (LT), and TcsH, toxin C. sordellii
hemorrhagic, also known as hemorrhagic toxin (HT), were first described in 1969 by
Arseculeratne and colleagues as two independent toxins secreted by P. sordellii with ede-
matizing and hemorrhagic activities (42). In 1987, Popoff purified TcsL and described
TcsL as an ;250-kDa cytotoxin that was immunologically related to TcdB (43). One year
later, Martinez and Wilkins purified and characterized TcsH, describing it as an;300-kDa
protein that was immunologically similar to TcdA (44).

P. sordellii has been implicated in a myriad of sporadic infections in both humans
and animals which are characterized by a mild or completely absent inflammatory
response (45). P. sordellii has been associated in wound-associated gas gangrene in

TABLE 2 Large clostridial toxins: overview

Organism Toxin Mol wt (kDa) Biological activity Role in infection
C. difficile TcdA 308 Enterotoxica (269) Primary virulence factor in TcdB2 TcdA1 strains, less central

role in TcdB1 TcdA1 strains
TcdB 270 Enterotoxica (270) Primary virulence factor in TcdB1 TcdA(1/2) strains

P. sordellii TcsL 270 Necrotizing, edematizing (45) Primary virulence factor in TcsL1 TcsH(1/2) strains
TcsH 299 Hemorrhaging (45) Unknown

C. novyi TcnA 250 Necrotizing, edematizing (271) Primary virulence factor in C. novyi type A and B infections
C. perfringens TpeL 206 Unknown May enhance virulence of C. perfringens type G strains
aIn some animal models, TcdA and TcdB also cause extraintestinal damage (272). CDI-related extraintestinal effects are extremely rare and poorly understood (273, 274).
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humans and animals (46, 47). Gas gangrene is typified by large amounts of gas, which
can form bubbles and blisters in tissue that can lead to necrotizing infection and tissue
death. More recently, P. sordellii infections have been identified in deep tissue infec-
tions (most often in injection drug users), and during childbirth, abortion, and surgery
(5, 48–51). P. sordellii soft tissue infections in injection drug users are characterized by a
rapid onset of illness, massive edema, and, in some cases, necrotizing fasciitis, also
known as flesh-eating disease (48, 49). In toxic shock syndrome, P. sordellii colonizes
the genital tract and causes a rapidly fatal onset of infection. Toxic shock syndrome is
characterized by several clinical features, including leukocytosis, edema, and refractory
hypotension (5, 50, 51).

Most pathogenic strains of P. sordellii produce TcsL, while few produce TcsH, sug-
gesting that TcsL has a more central role in virulence than TcsH (52–54) (Table 2). In
support of TcsL as the major virulence factor in P. sordellii infections, animal studies
have demonstrated that TcsL alone causes extensive tissue edema and death, particu-
larly in the lung vascular endothelium (55, 56), and inactivation of the tcsL gene pre-
vents mice from developing tissue edema or dying (57). Amimoto et al. have, however,
shown that vaccination with toxoids of both TcsH and TcsL was required to protect
guinea pigs against a P. sordellii spore challenge (58), suggesting a possible role of
TcsH in virulence. In P. sordellii culture supernatants, however, TcsH has been shown to
account for a marginal amount of toxicity, with ;98% of supernatant toxicity attribut-
able to TcsL, suggesting that TcsH may have a minimal, if any, role in infection (52).

C. novyi and TcnA

C. novyi was first isolated in the late 19th century by F. G. Novy (4). An excellent his-
torical review of C. novyi is provided by Aronoff and Kazanjian (4). In brief, to determine
the bacteriological components of food substances, Novy injected nuclein isolated
from milk into rabbits. Unexpectedly, the rabbits developed septicemia with malignant
edema and rapidly died. From the deceased rabbits, Novy was able to, albeit with great
difficulty due to its extreme oxygen sensitivity, cultivate and isolate the bacterium re-
sponsible for infection and death, naming it Bacillus novyi in 1897. The bacterium was
again isolated in 1915 from a combat wound in a soldier who later developed gas gan-
grene and named Bacillus oedematiens (59). In 1923, the bacterium was formally reclas-
sified as Clostridium novyi (60).

C. novyi alpha toxin, also known as TcnA for toxin C. novyi alpha, or simply alpha toxin,
was first isolated from C. novyi by Izumi et al. in 1983 and was shown to have lethal and
edematizing activity in mice (61, 62). TcnA was later shown to have similar cytopathic
effects and sequence homology to other members of the LCT family (3, 63, 64).

C. novyi is a rare pathogen of both animals and humans (46). Owing to its extreme
oxygen sensitivity, C. novyi is very difficult to cultivate, which may contribute to the rar-
ity in which C. novyi is implicated in infection. Like P. sordellii, C. novyi has been impli-
cated in some cases of wound-associated gas gangrene that resulted in lethal infec-
tions of deep soft tissue (46, 47). C. novyi has also been implicated in hepatic damage
and infectious necrotic hepatitis in animals, also known as black disease, due to the
dark discoloration of subcutaneous tissue caused by severe congestion of blood ves-
sels (65, 66). Infectious necrotic hepatitis is usually accompanied by subcutaneous
edema, hemorrhaging, and necrotic lesions in the liver (65). More recently, C. novyi has
been identified as the causative agent in severe soft tissue infections in injection drug
users (67–69). C. novyi infection in injection drug users has similar clinical features as
infection with P. sordellii, including leukocytosis, edema, and refractory hypotension,
which can lead to necrotizing infection (67–69).

TcnA is produced by C. novyi type A and B (Table 2). C. novyi type A is associated
with gas gangrene infections in humans and animals and infections in injection drug
users (67–69). C. novyi type B is associated with necrotic enteritis in animals (66, 70, 71).
TcnA is believed to be the major virulence factor in C. novyi type A and B infections,
largely owing to its lethal and edematizing activity in vitro and in vivo in animal models
(4) (Table 2). For livestock infected with necrotic hepatitis, detection of the tcnA gene has
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been used to confirm C. novyi type B infection (66). Interestingly, C. novyi infection in
injection drug users has very similar clinical manifestations as those in patients with P.
sordellii-induced toxic shock syndrome, suggesting that both diseases may be mediated
by toxins with similar biochemical and biological activities (4).

C. perfringens and TpeL

C. perfringens was first isolated near the end of the 19th century by two independ-
ent research groups. For an excellent review on the history and isolation of C. perfrin-
gens, please consult Rood et al. (72). In brief, in 1891, W. H. Welch isolated C. perfringens
from the blood and organs of a deceased male who had died of an aortic aneurism
(73). Concurrently, M. P. Achalme isolated C. perfringens from a patient with acute artic-
ular rheumatism (74). Welch and colleagues named the bacterium Bacillus aerogenes
capsulatus (aerogenes for air/gas producing and capsulatus for capsule), and Achalme
named the bacterium Bacillus phlegmonis emphysematosae (phlegmonis for phlegmon,
an area of acute inflammation in soft tissue, and emphysematosae for emphysema, a
condition of abnormal enlargement of tissues). Since then, C. perfringens has been
renamed multiple times before the formal adoption of Clostridium perfringens (perfrin-
gens for per, meaning through, and frango for burst) in the 1930 (75, 76).

C. perfringens large toxin, also known as TpeL for toxin perfringens large, is the most
recently discovered LCT. TpeL was isolated from C. perfringens culture filtrate in 2007
by Amimoto et al. (77). The researchers noted that TpeL had sequence homology to
other LCTs and was toxic when injected into mice.

C. perfringens has been implicated in numerous diseases in humans and animals
(78). Like P. sordellii and C. novyi, C. perfringens is associated with some cases of
wound-associated gas gangrene, with reports suggesting that C. perfringens is respon-
sible for up to 90% of all clostridium-mediated gas gangrene (46, 47). In humans, C.
perfringens is one of the leading causes of bacterium-mediated food poisoning (79)
and is associated with antibiotic-associated diarrhea (80) and necrotizing enterocolitis,
a lethal infection characterized by profound inflammation of the intestine that occurs
mostly in neonates (81). In animals, particularly poultry, C. perfringens is implicated in
severe and often fatal disease, including necrotic enteritis, which costs the agricultural
industry in excess of two billion dollars per year in the United States alone (82).
Necrotic enteritis, also known as pulpy kidney or overeating disease, is an acute enter-
otoxemia that has clinical manifestations that differ between animals. Clinical manifes-
tations include enterocolitis, a soft consistency of the kidney, and encephalomalacia
within the brain (83, 84).

TpeL is present in isolates of C. perfringens types B, C, and G (85–87) (Table 2). The
majority of C. perfringens type B and C strains are associated with hemorrhagic and ne-
crotic enteritis in animals and enteritis necroticans in humans, respectively (88). Chen
and McClane have shown that natural production levels of TpeL in C. perfringens type
C supernatants contribute to cytotoxic activity, suggesting a potential role of TpeL in
type C infections (87). However, there is no direct evidence that TpeL contributes to
C. perfringens type B and C infections. Strong evidence instead supports a central role
for other C. perfringens toxins, including b-toxin and « -toxin in type B infections and
b-toxin and enterotoxin (CPE) in type C infections (88). C. perfringens type G strains are
associated with necrotic enteritis in poultry, and there is some evidence to suggest that
TpeL may contribute to virulence in type G strains (89). TpeL-positive strains are associated
with a more rapid course of infection and a higher fatality rate than TpeL-negative strains
(89). C. perfringens toxin NetB is, however, believed to be the major virulence factor in type
G infections (90). It is yet unclear if TpeL contributes to virulence, by acting either alone or
synergistically with NetB.

LCT GENE ORGANIZATION AND REGULATION

In 1996, a 19.6-kb chromosomal region termed the pathogenicity locus (PaLoc) was
uncovered in C. difficile strain VPI 10463 (91). The C. difficile PaLoc contains genes for
both TcdA and TcdB as well as three accessory genes: tcdR, tcdC, and tcdE (Fig. 2). The
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accessory gene tcdR encodes an alternative RNA polymerase sigma (s ) factor, TcdR.
TcdR belongs to the s70 family of alternative s factors, which includes alternative s

factors of other pathogenic clostridia, such as BotR of C. botulinum and UviA of C. per-
fringens (92). TcdR is a positive regulator of LCT expression and is critical for the initia-
tion of TcdA and TcdB gene expression (92). The accessory gene tcdC encodes an anti-
s factor, TcdC. TcdC negatively regulates LCT expression by directly interacting with
TcdR or the TcdR-RNA polymerase holoenzyme (93, 94). TcdC may have a role in con-
trolling TcdA and TcdB levels, as C. difficile strains with frameshift mutations or dele-
tions of the tcdC gene have increased toxin production (31, 95). The extent to which
TcdC contributes to LCT regulation remains controversial, as several studies have dem-
onstrated that TcdC only moderately contributes to LCT expression (96, 97). The acces-
sory gene tcdE encodes a bacteriophage holin-like protein, TcdE. Holins are bacterio-
phage-encoded membrane proteins that oligomerize and form holes in the host cell
membrane to release progeny phage (98). Multiple reports have suggested that holin-
like proteins may be responsible for release of proteins from bacteria (99–101). Based
on sequence homology to holins and the lack of obvious export signatures on TcdA
and TcdB, TcdE was proposed to regulate TcdA and TcdB release from C. difficile (102).
In 2012, Govind and Dupuy demonstrated that TcdE facilitates the release of TcdA and
TcdB without inducing cell lysis (103), providing the first experimental evidence of
holin-like proteins mediating the secretion of proteins from bacteria. In addition to
holin-dependent secretion, there is evidence that C. difficile can also release TcdA and
TcdB by bacteriolysis mediated by the cell surface peptidoglycan hydrolase Cwp19
(104, 105).

The C. difficile PaLoc is located at the same chromosomal site in the majority of C. difficile
strains (91, 106, 107). C. difficile strains lacking the PaLoc harbor a 75/115-bp noncoding
region, are nontoxigenic, and do not cause disease (91, 108). The C. difficile PaLoc can be
transferred from toxigenic to nontoxigenic strains and thus has characteristics of a mobile
genetic element (109). There is considerable genetic variation in PaLocs of different C. difficile
strains, including truncated and monotoxin PaLoc variants (110, 111). Genetic variations of
the C. difficile PaLoc have been assessed by toxinotyping, a PCR restriction fragment length
polymorphism method that distinguishes strains into 34 toxinotypes based on the PaLoc
(107). Based on genetic studies of the PaLoc, it has been suggested that the bitoxin PaLoc
(i.e., containing TcdA and TcdB) may have evolved from the merging of two monotoxin
PaLocs (i.e., containing either TcdA or TcdB) (111).

A PaLoc-like region has been identified in strains of P. sordellii (112) and C. perfringens
(113) (Fig. 2). In contrast to the chromosomally localized C. difficile PaLoc, the P. sordellii and

FIG 2 LCT gene organization. The PaLoc of C. difficile and PaLoc-like regions of P. sordellii and C.
perfringens, first identified in C. difficile strain VPI 10463, P. sordellii strain VPI 9048, and C. perfringens
strain ATCC 3626. LCT genes are colored red. Accessory genes are colored as follows: alternative s
factor (tcdR/tcsR/tpeR) in blue, anti-s factor (tcdC) in purple, and holin-like protein (tcdE/tcsE/tpeE) in
yellow.
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C. perfringens PaLoc-like regions are located on conjugative plasmids (54, 85, 114, 115). Both
the P. sordellii and C. perfringens PaLoc-like regions contain accessory genes that are homolo-
gous to the C. difficile genes tcdR and tcdE and encode TcdR- and TcdE-like proteins, respec-
tively. In P. sordellii, the genes tcsR and tcsE encode TcsR and TcsE (112), and in C. perfringens,
the genes tpeR and tpeE encode TpeR and TpeE (113) (Fig. 2). TcdR, TcsR, and TpeR are all
members of the s 70 family of alternative s factors (113). TcsR and TpeR have been demon-
strated to regulate the expression of TcsL and TpeL, respectively (112, 113). Notably, TcdR
and TcsR are functionally interchangeable, while neither TcdR or TcsR can be functionally
exchanged with TpeR (113). TcdE and TcsE belong to superfamily 4 of bacteriophage
holins, and TpeE belongs to the DUF2762 superfamily of bacteriophage holins (116).
Recently, TpeE was demonstrated to facilitate the secretion of TpeL without cell lysis,
supporting a model of holin-dependent toxin secretion in C. perfringens (117). Due to the
similarities in structure and function of TcdR and TcsR and of TcdE and TcsE, it has been
suggested that the C. difficile PaLoc and P. sordellii PaLoc-like region may share a recent
common ancestor, while the PaLoc-like region of C. perfringens may be more divergent (113).
This is consistent with C. difficile and P. sordellii both belonging to the Peptostreptococcaceae
family, while C. perfringens belongs to the Clostridiaceae family.

There are few studies on tcnA gene organization. In C. novyi, the tcnA gene is phage
localized (118), and toxigenic strains of C. novyi can transduce nontoxigenic strains of
C. novyi to produce TcnA, indicating mobile transfer of the tcnA gene (119). It is not
currently known whether the tcnA gene resides within a PaLoc-like region or how tcnA
expression is regulated.

The C. difficile PaLoc and the P. sordellii and C. perfringens PaLoc-like regions are
influenced by environmental, physiological, and nutrient signals. Regulation of the
PaLoc has been extensively studied in C. difficile (120) and has been studied in less
detail in P. sordellii and C. perfringens (113). In C. difficile, P. sordellii, and C. perfringens,
LCT production follows a similar pattern of temporal expression, with increases in toxin
production as bacterial cells approach the stationary phase of growth (113, 121, 122).
The regulatory pathways that coordinate LCT production and bacterial growth are not
well understood. Quorum sensing has been proposed to coordinate LCT production
and bacterial growth, enabling the clostridia to modulate LCT production in response
to bacterial cell densities (113). In C. difficile, P. sordellii, and C. perfringens, LCT produc-
tion is repressed by glucose (112, 113). In C. difficile, the catabolite control protein A
(CcpA) mediates the bacterium’s response to glucose, by directly and indirectly inhibi-
ting transcription of numerous regulators (123, 124). Both P. sordellii and C. perfringens
harbor CcpA homologues (113), which may mediate the glucose response in these
organisms, although this has not been experimentally demonstrated. It has been pro-
posed that TcdA and TcdB production is triggered by C. difficile in response to particu-
lar states of nutrient availability during infection and that toxin production improves
nutrient availability for the bacterium, thus enabling C. difficile to persist and cause
damage to the host (120). The integration of regulation, toxin production, and infec-
tion in P. sordellii and C. perfringens is not well understood.

In addition to growth conditions and glucose, the C. difficile PaLoc is regulated by a
complex array of environmental and physiological factors through several global regulators,
including CodY, SigD, PrdR, Rex, RstA, and Spo0A (120, 125–128). These environmental and
physiological factors include temperature (129), amino acids such as proline and cysteine
(130), short-chain fatty acids such as butyric acid that are present in the gut (131), subinhibitory
concentrations of antibiotics (132, 133), stress responses (134), and sporulation (135, 136).
Interestingly, several studies have reported that regulation of the C. difficile PaLoc is strain spe-
cific, with the PaLoc across different strains responding differently to antibiotics (120) and spor-
ulation cues (126, 128). Furthermore, epidemic C. difficile RT027 strains encode a binary toxin
locus, CdtLoc, which has been suggested to regulate PaLoc expression (137).

LCT Classification and Subtyping Analysis

With the increasing number of sequenced bacteria, LCTs are being detected in an
expanding number of clostridial genomes. A key question that has emerged is whether
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LCT genes vary across clostridial strains, and if so, if sequence variation contributes to
biological and functional differences, which may manifest in different clinical presenta-
tions of infection and disease. Recently, Mansfield et al. (138) and Shen et al. (139) and
proposed a method of sequence-based subtyping of TcdA and TcdB to enable more
accurate predictions of variations in toxin activity. The subtyping analysis on a larger
set of C. difficile genomes by Mansfield et al. partitions TcdA and TcdB into 7 and 12
distinct subgroups, referred to as A1-7 and B1-12, respectively (138). TcdA and TcdB
from C. difficile VPI 10463, which has been the reference strain since the 1980s, belong
to the A1/B1 subtype, and TcdA and TcdB from epidemic strains, such as RT027, tend
to cluster outside the A1/B1 subtype (138). Interestingly, TcdA variants differ mainly in
the number of repeats in the C-terminal repetitive region, while TcdB has diversified
through extensive homologous recombination throughout its entire sequences (138).
Variations in TcdB sequence have been correlated with distinct antigenic, receptor-
binding, and phenotypic properties, which will be reviewed in the upcoming sections
on LCT structure and function. To the best of our knowledge, sequence variations in
TcsL, TcsH, TcnA, and TpeL across different strains have not been investigated.

STRUCTURE AND FUNCTION OF LCTs
Holotoxin Structure

Over the years, numerous structures have been solved for individual LCT domains
as well as multidomain and full-length fragments of TcdA and TcdB, providing enor-
mous insights into LCT structure and function. In 2010, the structure of full-length
TcdA was determined by negative stain electron microscopy (EM) and small-angle X-
ray scattering (SAXS) (140, 141). TcdA was shown to have a bilobed organization, with
a globular “head” region consisting of the glycosyltransferase and cysteine protease
domain, from which the T domain extends to the opposite end of the molecule. The
structure of the CROP-less TcdA later confirmed the organization of the glycosyltrans-
ferase domain, the cysteine protease domain, and the T domain and enabled refine-
ment of structural changes at neutral and acidic pH by fitting the high-resolution TcdA
structure to EM maps of the TcdA holotoxin (142) (Fig. 3A and B). At neutral pH, the
TcdA CROP makes structural contacts with the T domain, and at acidic pH, the CROP
extends away from the T domain (Fig. 3A and B). The X-ray structure of full-length
TcdB later revealed the precise positioning of the TcdB CROP at acidic pH and the
dynamism of the CROP at neutral pH (143) (Fig. 3C). At acidic pH, the TcdB CROP
extends ;130Å from the base of the cysteine protease domain and T domain, curving
around the glycosyltransferase domain like a hook in a “open” configuration (143).
Although the full-length TcdB structure was solved at acidic pH, no major structural
changes were observed for the glycosyltransferase, cysteine protease, and T domain
compared to that at neutral pH (143). Notably, the glycosyltransferase domain and T
domain were bound to nanobodies, which may have prevented the full suite of pH-
mediated conformational changes.

Combined Repeating Oligopeptide

The combined repeating oligopeptide (CROP) is the C-terminal domain of LCTs,
except the naturally CROP-less TpeL. As the name suggests, the CROP is composed of
multiple repeating units: 19- to 24-amino-acid short repeats (SRs) and 29- to 31-amino-
acid long repeats (LRs). The LCT CROP is variable in sequence, sharing between 27%
and 75% sequence identity among LCTs (Table 3). The LCT CROP ranges in size, from
40 kDa to 100 kDa, and correspondingly, in number of SRs and LRs (Table 4). The
CROPs of TcdA and TcsH are the largest, with 30 and 33 SRs and 6 and 7 LRs, respec-
tively, while the CROP of TcnA is the shortest, with 13 SRs and 3 LRs.

At present, there is structural information for the TcdA and TcdB CROP (Fig. 3C and
D). The SRs and LRs of the CROP consist of one and three b-hairpins, respectively, with
a variable loop region of 7 to 10 amino acids for SRs and ;18 amino acids for LRs (144,
145) (Fig. 3D). SRs pack together, forming a solenoid-like fold, and LRs introduce kinks
and curvature into the CROP structure. Using the structure of the TcdA CROP fragment
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as a framework, Ho et al. built models of the full-length TcdA and TcdB CROPs (144).
Ho et al. were the first to propose the S-shape and hook-shape structures of the TcdA
and TcdB CROPs, respectively; these predictions were later supported by EM (140) and
X-ray crystallography (143) (Fig. 3A, B, and C). Furthermore, work by Chen et al. has
shown that the TcdB CROP has a C-terminal SR hinge region that confers conforma-
tional mobility to the CROP, enabling the CROP to adopt “open” and “closed” confor-
mations at acidic and neutral pHs, respectively (143).

The CROP has long been assumed to mediate cellular binding and entry into host
cells. Antibodies against the CROP prevent cell-surface binding and toxicity (146, 147),
and recently, the TcdA CROP was shown to mediate binding to the colonic epithelium
(148). Due to homology with streptococcal glycosyltransferases, the CROP was first
postulated to mediate LCT attachment to cell surfaces by binding to carbohydrate moi-
eties (20), a common strategy of bacterial and viral pathogens (149). In support of the
CROP as a carbohydrate binding region, the TcdA and TcdB CROPs have been demon-
strated to bind cell surface carbohydrates with low affinity (150–153). The physiological
relevance of TcdA and TcdB binding to carbohydrates in the context of cellular intoxi-
cation has not been clarified. Recent work has demonstrated that the protein receptor
chondroitin sulfate proteoglycan 4 (CSPG4) binds in part to the TcdB CROP (amino
acids 1831 to 1850) and to the T domain (154), providing evidence that regions of the

TABLE 3 LCT CROP sequence identity and similarity

LCT

% sequence identity (% similarity)a

TcdA TcdB TcsH TcsL
TcdB 37 (51)
TcsH 68 (77) 43 (57)
TcsL 36 (50) 75 (87) 43 (59)
TcnA 34 (45) 27 (40) 39 (57) 31 (48)
aSequence identity and similarity were calculated using Water (EMBOSS) local alignment. LCTs are from the
following strains: C. difficile VPI 10463, P. sordellii VPI 9048, and C. novyi 19402. Under new subtyping analysis,
TcdA and TcdB from C. difficile VPI 10463 are referred to as TcdA1 and TcdB1 (138).

FIG 3 Structure and organization of the C. difficile holotoxin. (A) TcdA1–1832 (PDB 4R04) fit into the EM
map of the TcdA holotoxin at neutral and acidic pH (140) using Chimera (267). The TcdA EM maps
were kindly provided by Borden Lacy and are reproduced with permission. (B) Focused view of
TcdA1–1832. (C) Structure of TcdB1–2366 at acidic pH (PDB 6OQ5). In the focused image, short repeats
(SRs) are colored purple and long repeats (LRs) are colored green. (D) Structure of a fragment of the
TcdA CROP (PDB 2G7C), with SRs colored purple and LRs colored green.
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CROP are involved in receptor binding. Presently, no other protein receptors have
been identified that bind to the CROP of other LCTs.

It is clear that the CROP is not the sole LCT domain that mediates cell surface bind-
ing and entry, as was originally hypothesized. Multiple receptors have been identified
that bind in the LCT T domain (148, 155–159) (reviewed in the upcoming section),
including a receptor for the CROP-less TpeL (160). Functional studies with TcdA and
TcdB have also demonstrated that toxin entry is attenuated or not affected by trunca-
tions or complete removal of the CROP (77, 161, 162). Interestingly, several studies
have demonstrated that the LCT CROP has functions apart from binding to cell surface
carbohydrates and protein receptors. These functions include aiding in holotoxin fold-
ing, stabilization, and prevention of premature autoprocessing (163–165). Recently, it
was shown that the TcdB CROP directly and reversibly binds intestinal bile acids, inhibi-
ting toxin uptake and thereby intoxication (166). Bile acids prevent TcdB from binding
to cell surface receptors and induce conformational changes that enable TcdB to
become more resistant to proteolytic digestion (166). Notably, intestinal bile acids do
not bind to the TcdA CROP or to the CROP-less TpeL. Although the role of bile acid
binding to TcdB requires further study, this work suggests that bile acids may impact
the timing of TcdB intoxication of cells, modulating virulence with respect to bile acid
concentration in the gastrointestinal tract. It is not yet known if bile acids bind to other
LCTs to modulate cellular intoxication.

Bezlotoxumab is a neutralizing antibody against TcdB that is used in the treatment
of recurrent CDI (167). To neutralize TcdB, bezlotoxumab binds two epitopes in the N
terminus of the TcdB CROP (146). Notably, bezlotoxumab was generated using TcdB1
antigens (from strain VPI 10463) and has exhibited reduction in neutralization efficacy
against TcdB B2/4/5 subtypes from RT027, 8864, and RT078 strains (138, 168, 169).
Alignment of key residues in the epitope region across all TcdB subtypes by Mansfield
et al. revealed residue changes in B2/4/5 TcdB subtypes (138), providing strong evi-
dence that the reduced efficacy of bezlotoxumab is related to sequence variations in
the epitope binding region of subtypes. TcdB subtyping is clearly essential to direct
the clinical use of bezlotoxumab and other emerging toxin-targeted therapies.

Translocation and Receptor-Binding Domain

The translocation and receptor-binding domain (T domain) is an ;1,000-amino-
acid domain that shares between 28% and 79% sequence identity among LCTs (Table
5; Fig. 4A). At present, there are high-resolution structures of the full-length T domains
of TcdA (142) and TcdB (143, 170) and of a fragment of TcsL (158). The LCT T domain is
structurally unique and, at neutral pH, is composed largely of b-sheets, with a short
helical region (amino acids 956 to 1135) that extends from one end of the T domain to
the other, wrapping around b-sheet structures (142) (Fig. 4A). Interestingly, although
no major structural rearrangements were observed for the T domain at acidic pH, there
is a loss of electron density within the helical stretch (944 to 949 and 1032 to 1047),
suggesting structural flexibility of this region (143).

Several cell surface receptors have been identified that bind to the LCT T domain.
Receptors for TcdA (148), TcdB (155–157), TcsL (158, 159), and TpeL (160) have been
identified (Table 6), while the receptors for TcsH and TcnA remain more elusive.

TABLE 4 LCT CROP repeating units

LCTa CROP bounds
No. of short
repeats

No. of long
repeats Mol wt (kDa)

TcdA 1812–2710 33 7 102
TcdB 1814–2366 21 4 64
TcsH 1812–2618 30 6 92
TcsL 1815–2364 21 4 63
TcnA 1822–2178 13 3 41
aLCTs are from the following strains: C. difficile VPI 10463, P. sordellii VPI 9048, and C. novyi 19402. Under new
subtyping analysis, TcdA and TcdB from C. difficile VPI 10463 are referred to as TcdA1 and TcdB1 (138).
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Notably, LCTs do not bind to the same receptors, and several LCTs have been demon-
strated to bind multiple receptors (Table 6).

Sulfated glycosaminoglycans (sGAGs) and low-density lipoprotein receptor (LDLR)
have been identified as host cell factors that mediate cell surface binding and entry of
TcdA (148) (Table 6). Both factors were identified using genome-wide CRISPR-Cas9
screens using a truncated TcdA lacking the majority of the CROP. Biolayer interferome-
try confirmed that sGAGs bound directly to TcdA independent of the CROP. Binding
could not be directly detected between LDLR and TcdA, suggesting that TcdA and
LDLR bind weakly or require other cellular factors (148). While both sGAGs and LDLR
mediate cellular binding and entry, the former were suggested to be the major attach-
ment factors in the colonic epithelium (148). The exact role of LDLR binding in the con-
text of TcdA intoxication remains to be clarified. Due to the major function of LDLR
family receptors in mediating endocytosis (171), LDLR may facilitate endocytosis of
TcdA bound to sGAGs (148). It is possible that TcdA binds to structurally similar LDLR
family receptors, many of which are cell surface receptors for other pathogens (160,
172, 173). In support of TcdA binding structurally similar LDLR family members,
Schöttelndreier et al. have recently provided evidence that TcdA binds to low-density
lipoprotein receptor-related protein-1 (LRP1) (174).

At present, three receptors for TcdB have been identified: Wnt receptor frizzled fam-
ily (FZD) FZD1/FZD2/FZD7 (156), chondroitin sulfate proteoglycan 4 (CSPG4) (155), and
poliovirus receptor-like protein 3 (PVRL3/nectin 3) (157) (Table 6). Competition studies
have demonstrated that FZD and CSPG4 bind independently of each other, indicating
distinct nonoverlapped binding sites for these two receptors (156). It is not known
whether PVRL3 binds at distinct sites or competes with binding to TcdB with FZD and
CSPG4. FZD binds TcdB in the central region of the T domain, with palmitoleic acid
(PAM) mediating binding of TcdB and FZD by making extensive contacts with both
TcdB and FZD (170) (Table 6; Fig. 4A and B). Several reports have indicated that FZD
binding varies between TcdB subtypes, with B2 and B4 subtypes having reduced affin-
ity for FZD compared to that of B1 and B3 subtypes (175–178). Mansfield et al. have
shown that the FZD binding motif is not conserved in B2/4/7/10/11 subtypes, suggest-
ing that these subtypes may all have reduced affinity for FZD (138). The exact binding
sites of CSPG4 and PVRL3 on TcdB are unknown. Functional studies have indicated
that CSPG4 binds to both the T domain and the CROP (154) (Table 6) and that B3 and
B4 subtypes have reduced affinity for CSPG4 binding compared to that of B1 and B2
subtypes (178). Recently, truncation and mutational analysis of TcdB revealed that the
GTD and CPD contribute to CSPG4 binding, suggesting that the CSPG4 binding inter-
face may be composed of multiple TcdB domains that converge in the holotoxin (178).
PVRL3 is believed to bind to the central region of the TcdB T domain (162) (Table 6).
Chung et al. have demonstrated that the B2 subtype has lower affinity for PVRL3 than
B1 and suggested that the CROP may modulate PVRL3 binding, although it is not yet
clear how this modulation occurs (176).

TABLE 5 Sequence identity and similarity of LCT translocation and receptor-binding
domains

LCT

% sequence identity (% similarity)a

TcdA TcdB TcsH TcsL TcnA
TcdB 47 (69)
TcsH 79 (92) 48 (70)
TcsL 47 (69) 77 (88) 48 (70)
TcnA 28 (50) 28 (51) 28 (51) 28 (50)
TpeL 36 (56) 33 (56) 37 (56) 34 (56) 28 (47)
aSequence identity and similarity were calculated using Water (EMBOSS) local alignment. The following
boundaries of the LCT T domains were used for sequence comparison: TcdA (802 to 1812), TcdB (800 to 1814),
TcsH (802 to 1812), TcsL (800 to 1815), and TcnA (800 to 1822). LCTs are from the following strains: C. difficile VPI
10463, P. sordellii VPI 9048, C. novyi 19402, and C. perfringens JGS1495. Under new subtyping analysis, TcdA and
TcdB from C. difficile VPI 10463 are referred to as TcdA1 and TcdB1 (138).
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TcdB may utilize multiple receptors with different binding sites to broaden the
selection of mammalian cells it can target. Both PVRL3 and FZDs are highly expressed
on the surface epithelium of the human colon (156, 157), while CSPG4 is predomi-
nantly expressed in the multinucleated intestinal subepithelial myofibroblasts (ISEMFs)
(179). The expression of PVRL3 and FZDs on the colonic epithelium suggests that
PVRL3 and FZD might be the first receptors TcdB encounters when released into the
lumen of the colon, and CSPG4 might serve as an important target to cause further tis-
sue damage by exposing subepithelial myofibroblast cells. Notably, FZDs are receptors
in the Wnt signaling pathway, an essential pathway for maintaining colonic stem cells
(180). Healthy colonic stem cells constantly supply new colonic epithelial cells, which is
central to colonic epithelial cell renewal and repair. TcdB competes with Wnt for bind-
ing to FZDs and, subsequently, inhibits Wnt signaling (156), suggesting that colonic
stem cells are a potential target in C. difficile pathogenesis (181). Interestingly, recent
work by Mileto et al. has shown that the B2 subtype can induce stem cell damage in
an FZD-independent manner, suggesting the involvement of other TcdB receptors in
mediating colonic epithelial damage (182). More recently, Pan et al. have also demon-
strated that TcdB subtypes induce different pathological effects in mouse colonic tis-
sue, suggesting that receptor preference can mediate colonic pathology (178).

Semaphorins 6A and 6B (SEMA6A/6B) have been identified as cellular receptors for TcsL by
two independent genome-wide CRISPR-Cas9 screens (158, 159) (Table 6). SEMA6A binds to
the central region of the T domain, forming a discontinuous binding interface along the T do-
main (158) (Table 6; Fig. 4C). Interestingly, the interface on TcsL that binds SEMA6A corre-
sponds to the same interface on TcdB that binds FZD2, indicating that LCTs bind structurally
unrelated receptors using the same receptor-binding interface (158). Furthermore, mutation of
multiple residues in TcsL changes binding specificity to FZD2, suggesting that LCT receptor
binding can be fine-tuned by changing key residues in the interaction surfaces (158, 159).

Intraperitoneal injection of TcsL causes major damage to lung endothelial cells,
resulting in increased vascular permeability and edema in the lungs (55). Therefore,

FIG 4 Structure of the LCT T domain and LCT-receptor complexes. (A) T domain of TcdB (PDB 6OQ5),
with the hydrophobic helical stretch (residues 956 to 1135) colored green and the interface residues
for FZD2 binding colored yellow. (B) TcdB1284–1804-FZD2 (PDB 6C0B), with focus on the receptor-
binding interface. TcdB is colored red, FZD2 interface residues on TcdB are colored yellow, FZD2 is
colored gray, and palmitoleic acid (PAM) is colored blue. (C) TcsL1400–1637-SEMA6A (PDB 6WTS). TcsL is
colored red, SEMA6A interface residues on TcsL are colored yellow, and SEMA6A is colored gray.
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the vascular endothelium is believed to be the primary target of TcsL in vivo (55). Mice
coinjected with TcsL and SEMA6A fused to an Fc fragment are protected from develop-
ing fluid edema in lung tissues, indicating that blocking SEMA6A-mediated TcsL entry
into cells prevents toxin-induced symptoms (158). The physiological consequences of
TcsL binding SEMA are not entirely clear. TcsL binds to SEMA6A at a position partially
overlapping the functional site used by the plexin A2 cognate ligand; thus, TcsL bind-
ing to SEMA6A/6B has been suggested to interfere with semaphorin-plexin signaling
in the vascular endothelium (158, 159). It is not yet known whether TcsL binding inhib-
its or disrupts semaphorin-plexin mediated downstream signaling pathways, many of
which have key roles in controlling cell shape and movement (183).

LRP1 was identified as a receptor for TpeL using a haploid genetic screen (160)
(Table 6). Functional studies have indicated that LRP1 binds the C-terminal region of
TpeL, although the exact binding site of TpeL on LRP1 has not been determined (160)
(Table 6). In a similar manner to that of LDLR family receptors and TcdA, LRP1 has been
hypothesized as an endocytic receptor for TpeL (160).

For LCTs to gain entry into cells, LCTs must be internalized. TcdB, TcsL, and TcnA are
endocytosed in a dynamin- and clathrin-dependent manner (184), while TcdA endocytosis
is clathrin independent but dependent on dynamin and on the host factor protein kinase
C and casein kinase substrate in neurons 2 (PACSIN2) (185). Investigation into the mecha-
nism of LCT-mediated endocytosis and the role of cell surface receptors is ongoing.
Schöttelndreier et al. have provided evidence that LRP1 contributes to TcdA internalization
(174) and that FZD2/7, CSPG4, and PVRL3 do not contribute to TcdB internalization, sug-
gesting the presence of a yet-unidentified receptor that facilitates TcdB endocytosis (186).
The latter finding is in direct contrast to previous reports that CSPG4 and PVRL3 facilitate
receptor-mediated endocytosis of TcdB (155, 157). To account for binding to both nonen-
docytic and endocytic receptors, Schöttelndreier et al. (174, 186) have proposed a model
for TcdA/TcdB uptake and entry. In this model, TcdA/TcdB first bind nonendocytic recep-
tors, enriching the cell surface. Nonendocytic receptors then associate with endocytic
receptors, facilitating TcdA/TcdB binding to the endocytic receptor and internalization
(174, 186). This model for TcdA/TcdB internalization requires experimental testing. It is not
yet known if other LCTs exploit a similar mechanism of cellular internalization.

For LCTs to modify cytosolic factors and exert their toxic effects, LCTs must escape
from internalized vesicles. Early on, it was noted that blocking endosomal acidification
with small molecule inhibitors of v-ATPases such as bafilomycin prevented LCT toxicity
(187–189). Furthermore, acidic pH was shown to trigger conformational changes
within LCTs, leading to exposure of hydrophobic surfaces and changes to protease sus-
ceptibility (187–189). The optimal pH for the hydrophobic transition of LCTs is between
pH 4.0 and 5.0 (187–189), although differences in the optimal pH have been reported
for a TcdB subtype (190). The requirement of endosomal acidification for toxicity and
acidic pH-induced conformational changes suggest that LCTs translocate out of endo-
somes in a similar manner to that of other bacterial toxins, including diphtheria toxin
(191) and botulinum neurotoxin (192). These bacterial toxins have long been thought
to form membrane-inserted pores in the endosomal membrane using their central
translocation domains that act as conduits for translocation of toxin enzymatic
domains into the cytosol. Several functional studies have shown that LCTs insert into
the membrane at acidic pH, leading to the release of rubidium from preloaded cells
and formation of ion-conductive pores (193, 194). TcdA has been demonstrated to
require cholesterol-enriched membranes for insertion, which may indicate that LCTs
preferentially insert into membranes, or regions of membranes, with a distinct lipid
composition. Notably, unlike diphtheria toxin (195) and botulinum neurotoxin (196),
LCTs do not form stable ion-conductive pores, instead exhibiting characteristic “flicker-
ing” electrophysiological behavior, with large conductances of up to ;1 to 2 nS and
lifetimes of several milliseconds (193, 194, 197).

Since the primary sequences of LCTs were determined, it was postulated that the
;172-residue marginally hydrophobic stretch near the N terminus of the T domain

Mechanisms of Large Clostridial Toxins in Disease Microbiology and Molecular Biology Reviews

September 2021 Volume 85 Issue 3 e00064-21 mmbr.asm.org 15

https://mmbr.asm.org


(TcdB amino acids 956 to 1128) was involved in membrane insertion, pore formation,
and translocation (20, 22, 140, 193, 194). In 2014, a site-directed loss-of-function muta-
genesis screen was performed on conserved LCT residues in the hydrophobic region of
TcdB (197). Highly sensitive residues were identified that were .100-fold defective in
both pore formation and cellular toxicity when mutated (197). Several years later,
regions of the LCT hydrophobic region were directly shown to insert into the mem-
brane, demonstrating the membrane insertion propensity of the hydrophobic region
(198). Additionally, an aspartate residue in the hydrophobic region, D1037 in TcdB, was
identified as a part of a yet-incompletely described “pH sensor” for membrane inser-
tion (198). A model for how the hydrophobic region may facilitate translocation was
proposed, based largely on similarities in hydropathy to the translocation domain of
diphtheria toxin and membrane insertion data of the LCT hydrophobic region (197,
198). This model posits that the LCT hydrophobic region forms a membrane-inserted
pore, inserting as a “double dagger” of two a-helical hairpins in the membranes, with a
nonhydrophobic inserting element located at the N-terminal edge of the hydrophobic
region. Importantly, this model has not been experimentally tested and many details
of translocation are not known, including the toxin oligomeric state and whether the
glycosyltransferase and cysteine protease domain must unfold in order to translocate.

Recently, hundreds of LCT T domain homologues were identified, providing an unprec-
edented opportunity to gain insights into the elusive mechanism of translocation (199).
LCT homologues share on average 18.6% amino acid identity with the TcdB T domain
(199) and retain important LCT translocation features (199). Unlike the canonical LCT family,
T domain homologues are found elsewhere in addition to clostridia and have variable do-
main architectures. Nearly 150 (;20% of all homologues) have an upstream glycosyltrans-
ferase and cysteine protease domain, and .300 (;40% of all homologues) have either an
upstream glycosyltransferase or cysteine protease (199). The remaining 40% of homo-
logues have an upstream sequence with no known domain annotation (199). The diversity
of the upstream protein region suggests that LCT-like translocases are permissible in the
types of proteins they can translocate. Several LCT T domain homologues have been func-
tionally characterized as protein translocases, including an LCT homologue from Serratia
marcescens (199) and two LCT homologues from Yersinia mollaretii (200). The S. marcescens
LCT homologue has been demonstrated to translocate its upstream cysteine protease and
a domain of unknown function into cells, while the LCT homologues from Yersinia mollare-
tii translocate their upstream enzymatic domains (a cysteine protease domain and either
an ADP-ribosyltransferase or glycosyltransferase domain) into cells, which inactivate Rab
proteins through ADP ribosylation and glycosylation, respectively (200).

Strikingly, distant T domain homologues have the highest degree of conservation
across the N terminus of the LCT T domain; this region was termed the “evolutionarily
conserved translocase” (199) (Fig. 5). In TcdB, the evolutionarily conserved translocase
was demonstrated to be a functional domain intertwined within receptor-binding sites
of the T domain that could independently facilitate translocation of the glycosyltrans-
ferase and cysteine protease domain (199). The evolutionarily conserved translocase
spans a region of the T domain that extends beyond the hydrophobic region, indicat-
ing that the hydrophobic region is not necessary and sufficient for translocation. It is
not clear if the evolutionarily conserved translocase is an independently folded domain
in other LCTs or LCT homologues or whether this region requires other parts of the
protein for stability/solubility.

In a recent analysis of .8,000 tcdB genes, the majority of conserved surfaces across
the entire toxin were located in the evolutionarily conserved translocase (138). Thus,
the evolutionarily conserved translocase is also an attractive target for broad-spectrum
therapeutics, which could target multiple TcdB subtypes, other LCTs, and LCT T domain
homologues.

Cysteine Protease Domain

The LCT cysteine protease domain (CPD) autocatalytically cleaves the N-terminal glycosyl-
transferase from the polypeptide, resulting in the release of the glycosyltransferase into the

Orrell and Melnyk Microbiology and Molecular Biology Reviews

September 2021 Volume 85 Issue 3 e00064-21 mmbr.asm.org 16

https://mmbr.asm.org


cytosol (201, 202). The LCT cysteine protease domain shares between 33% and 86%
sequence identity among LCTs (Table 7) and belongs to the C80 family of proteases (203).
C80 cysteine proteases are found in bacterial pathogens, such as the multifunctional auto-
processing repeats-in-toxin (MARTX) from Vibrio cholerae (204). All LCTs have a conserved
histidine, cysteine, and aspartate, which form a catalytic triad that is essential for autopro-
cessing (201, 205). Autoprocessing is not essential for cytotoxicity, but mutation of the cata-
lytic triad render LCTs less toxic (201, 205–207). It has been hypothesized that autoprocess-
ing is required for optimal activity of the LCT glycosyltransferase, most likely by improving
the access of the glycosyltransferase to cellular substrates (208). Enhanced autoprocessing
activity has been observed for a TcdB subtype from the epidemic C. difficile RT027, suggest-
ing that more efficient autoprocessing may be responsible for increased toxicity of toxin sub-
types (209).

To induce autoprocessing, LCTs must bind to the cellular host factor inositol hexaki-
sphosphate (InsP6), which is found exclusively in the cytosol of eukaryotic cells (210).
The equilibrium dissociation constant (KD) values for InsP6 binding to TcdA, TcdB, TcsL,
TcnA, and TpeL range from ;2.0mM to 9.0mM (189, 205). The structures of the TcdA
and TcdB cysteine protease domains bound to the cellular factor InsP6 were solved in
2009 and 2010, respectively (211, 212) (Fig. 6). The TcdA and TcdB cysteine protease
domains have a central b-sheet flanked by a number of a-helices. Structurally, the cys-
teine protease domains of TcdA and TcdB are very similar to, albeit larger than, the cys-
teine protease domains of MARTX (213, 214), containing additional helical regions and
an additional b-strand. The catalytic triad and InsP6-binding site are on opposite faces
of the domain and are separated by a three-stranded b-sheet, termed a b-flap. Binding of
InsP6, which is negatively charged, occurs at a basic, lysine-rich positively charged pocket.

TABLE 7 Sequence identity and similarity of LCT cysteine protease domains

LCT

% sequence identity (% similarity)a

TcdA TcdB TcsH TcsL TcnA
TcdB 57 (77)
TcsH 86 (95) 58 (77)
TcsL 57 (77) 79 (90) 59 (79)
TcnA 33 (57) 35 (57) 36 (59) 36 (60)
TpeL 53 (71) 51 (70) 54 (72) 51 (72) 38 (60)
aSequence identity and similarity were calculated using Water (EMBOSS) local alignment. LCTs are from the
following strains: C. difficile VPI 10463, P. sordellii VPI 9048, C. novyi 19402, and C. perfringens JGS1495. Under new
subtyping analysis, TcdA and TcdB from C. difficile VPI 10463 are referred to as TcdA1 and TcdB1 (138).

FIG 5 Translocation features of the TcdA T domain. (A) Structure of the TcdA T domain (PDB 4R04),
with the evolutionarily conserved translocase colored purple (residues 853 to 1475) and the
hydrophobic region (residues 958 to 1137) colored green. (B) Focus on the evolutionarily conserved
region and (C) the hydrophobic region without the rest of the T domain. Residues with important
functions in translocation identified by Zhang et al. (197) are shown as pink sticks.
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In TcdA and TcdB, InsP6 binding to the cysteine protease domain induces conformational
changes to the b-flap, which in turn transduces conformational changes to the active site
region (211, 215). Cleavage occurs after a conserved leucine residue and at neutral pH
(205, 216), resulting in release of the glycosyltransferase domain into the cytosol, while the
remainder of the toxin is localized in endosomes (217).

The mechanism of autoprocessing is highly similar among LCTs, although a few key
differences have emerged (189, 205). The TcsL holotoxin requires acidic pH to bind
InsP6 with high affinity, while all other LCTs preferentially bind InsP6 at neutral pH
(205). Binding of TcsL to InsP6 at acidic pH is unexpected, as InsP6 is present solely in
the cytosol of eukaryotic cells (210). Interestingly, the TcsL cysteine protease domain
binds to InsP6 with ;10-fold higher affinity at neutral pH than at acidic pH, suggesting
that the TcsL holotoxin must undergo major conformational changes at acidic pH
before binding to InsP6 at neutral pH (205). Studies have also revealed differences in
sensitivity to InsP6-induced cleavage between the TcdA and TcdB holotoxins (165).
TcdA is less sensitive to InsP6-induced cleavage, probably due to extensive domain
interactions between the TcdA CROP and N terminus at neutral pH (164, 206). It is pos-
sible that holotoxins with similar-sized CROP domains to that of TcdA, such as TcsH,
may be less sensitive to InsP6-induced cleavage, although to the best of our knowl-
edge, this has not been investigated. Several features relating specifically to TcdA and
TcdB autoprocessing activity and regulation have been reported. The histidine and cys-
teine of the TcdA and TcdB catalytic triad coordinate a zinc ion that is essential for
autoprocessing activity (142), and the cysteine of the TcdA and TcdB catalytic triad is
regulated through endogenous S-nitrosylation (218). Additionally, autoprocessing has
been implicated in regulating the proinflammatory activities of TcdA and TcdB (219). It
has not been demonstrated if zinc and S-nitrosylation are involved in autoprocessing
activity and regulation or if autoprocessing mediates inflammatory activity of other
LCTs.

Glycosyltransferase Domain

Once autocatalytically cleaved from the polypeptide and released into the cytosol,
the LCT glycosyltransferase modifies Rho and Ras GTPases by glycosylation, using
UDP-glucose or UDP-N-acetylglucosamine (GlcNAc) as a cosubstrate (189, 202,
220–223) (Table 8). Related glycosyltransferases have been identified in pathogenic
bacteria, including Escherichia coli (NleB) (224), and species of Legionella (Lgt1, 2, 3)
(225) and Photorhabdus (PaTox) (226). Numerous in vitro studies have provided evi-
dence that LCT-mediated glycosylation of Rho and Ras GTPases is essential for cellular
toxicity (189, 222, 227–229). Recently, Bilverstone et al. demonstrated that animals
infected with strains of C. difficile with glycosyltransferase-defective mutations were
unable to induce CDI, providing strong support that glycosyltransferase activity is
essential in C. difficile disease pathogenesis (230). At high nanomolar (.1 nM)

FIG 6 Structural features of the C. difficile toxin cysteine protease domain. (A) TcdA cysteine protease
domain (PDB 3HO6) and (B) TcdB cysteine protease domain (PDB 3PEE) bound to InsP6 (268). The
b-flap is colored purple, residues of the catalytic triad are depicted as blue sticks, and InsP6 is
colored green.
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concentrations of TcdB (163), glycosylation-independent effects, including necrosis (231)
and pyknosis (232), have also been reported. The physiological relevance of glycosylation-
independent effects of TcdB remains unclear and requires further investigation.

LCTs glycosylate Rho and Ras GTPases by cleaving the UDP-glucose or UDP-GlcNAc
cosubstrate and transferring glucose or N-acetylglucosamine onto the conserved
Thr35/37 of the target GTPase (233). LCT glycosyltransferases have conserved residues
that are essential for catalysis, most notably the aspartate-X-aspartate (DXD) motif
(TcdB D286/D288) and tryptophan (TcdB W102, W520) (52, 234, 235) that are important
for binding and coordination of the cosubstrate and a manganese ion (189, 227, 228,
234, 236, 237) (Fig. 7A). The glycotransferase domain shares between 34% and 85%
sequence identity among LCTs (Table 9), and differences in sequence have been
ascribed to differences in cosubstrate and GTPase specificity. In LCTs, specificity for
UDP-glucose or UDP-GlcNAc is dictated by two residues (I383 and Q385 in TcdB) (223,
238, 239). The molecular basis for GTPase specificity in LCTs has not been completely
defined. Preferential targeting of Rho and Ras GTPases in TcdB and TcsL has been
attributed to specific residues in the glycosyltransferase domain, such as those in a-he-
lix 17 (residues 444 to 455) in TcdB (45).

The structures of the TcdA (240, 241), TcdB (237), TcsL (242), and TcnA (242) glyco-
syltransferase domains have been solved by X-ray crystallography (Fig. 7). LCT glycosyl-
transferases belong to the GT-A family of glycosyltransferases (243), which are defined
by a core a/b/a sandwich that resembles a Rossmann fold, a tertiary fold found in
many nucleotide-binding proteins (244). In addition to the Rossmann-like fold, LCTs
have multiple a-helical subdomains. The N-terminal subdomain (;1 to 90 amino acids)
is a membrane localization domain that targets the glycosyltransferase to the cytosolic
leaflets of the cell membrane, where it can access membrane-bound Rho and Ras
GTPases. The nucleotide sugar-binding pocket is formed by the edge of the b-sheet
and several a-helices and is overlaid with a flexible loop that is involved in binding of
the phosphate of the nucleotide sugar (245, 246). The flexible loop undergoes conformational
changes upon substrate binding, defining open and closed conformations of the LCT glycosyl-
transferase. The TcdA and TcdB glycosyltransferase domains have been shown to interact with
the TRiC/CCT chaperonin system (247), which may aid in glycosyltransferase refolding in the
cytoplasm after unfolding in the acidic environment of the endosome. It is not yet known if
the TcsL, TcsH, TpeL, or TcnA glycosyltransferase interacts with cytosolic chaperones.

TABLE 8 Substrate specificity of LCT glycosyltransferase domainsa

LCT Sugar donor(s) Transfer(s) Strain Target(s)
TcdA UDP-glucose (220) Glucose VPI 10463 (A1) RhoA/B/C, Rac1, RhoG, Cdc42, Rap1/2, H/K/N-Ras (277, 278)

C34 Rho, Rac, Cdc42, Rap (279)
TcdB UDP-glucose (220) Glucose VPI 10463 (B1) RhoA/B/C, Rac1/2/3, Cdc42, RhoG (177, 277, 278, 280)

RT027 (B2) RhoA/B, Rac1/2/3, Cdc42, Rap1A/2A, R-Ras (177, 277, 281)
1470 (B3) Rac, Cdc42, Rap, Ral, R-Ras (282)
8864 (B4) Rac, Cdc42, Rap, Ral, R-Ras (279, 283)
C34 (B7)b Rho, Rac, Cdc42, Rap, Ral, R-Ras (279)
RT019 (B7) Rac1/2/3, Cdc42, Rap2A/1B, R-Ras1/2, (H/K)-Ras (177, 281)
HMX-152 (B7) RhoA (110)
HSJD-312 (B7) RhoA (110)
HMX-149 (B11) RhoA (110)

TcsL UDP-glucose (221) Glucose VPI 9048 Rac, Cdc42, Rap, Ras (221, 284)
IP 82 Rac, Rap, Ral, Ras (221, 285)
6018 Rac1, RhoG, Rap1/2, Ral, (H/K/N)-Ras (277, 284)

TcsH UDP-glucosec (221) Glucose VPI 9048 Rho, Rac, Cdc42, Ras (221, 286)
TcnA UDP-GlcNAc (222) N-Acetylglucosamine 590, 19402 Rho, Rac, Cdc42 (221, 287)
TpeL UDP-glucose, UDP-GlcNAcd

(189, 223)
Glucose, N-acetylglucosamine MC18 Rac, Rap, Ral, Ras (223)

JGS1495 (H/K/N)-Ras (288)
aThis table is based in part on data from Chandrasekaran and Lacy (239). If the sequence of the C. difficile subtype was available, the TcdA or TcdB subtype is indicated in
parentheses. Subtyping based on that reported by Mansfield et al. (138).
bBased on partial sequencing of the toxin gene.
cBased on conservation of key UDP-glucose binding features.
dPreferentially modifies GTPases by GlcNAcylation using UDP-GlcNAc (189).
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GTPases are molecular switches that cycle between an active GTP-bound state and
an inactive GDP-bound state. LCTs preferentially target GTPases in their inactive GDP-
bound state (202, 233). Rho GTPases are master regulators of the actin cytoskeleton,
control motile cellular processes, and are involved in cell cycle control and polarity
(248). Ras GTPases are essential for assembly and function of cell-cell junctions, cell dif-
ferentiation, and proliferation (249).

LCT-mediated glycosylation of Rho and Ras GTPases has been correlated with both
cytopathic effects (i.e., loss of cytoskeletal structure, resulting in the characteristic cell
rounding phenotype) and cytotoxic effects (i.e., apoptosis, resulting in cell death)
(Tables 9 and 10). In addition to the major cytopathic and cytotoxic effects, glycosyla-
tion of Rho and Ras proteins has also been correlated with cell cycle arrest and defects
in cell proliferation in TcdB and TcsL (250–252). Glycosylation-dependent cytopathic
and cytotoxic effects are believed to be primarily responsible for LCT-mediated tissue
damage, although the precise mechanisms underlying tissue damage and cell death
are not well defined. Broadly, two types of cytopathic effects have been described for
LCTs: cell rounding with protrusions radiating around rounded cells, also referred to as

FIG 7 Structural features of the LCT glycosyltransferase domain. (A) TcdB glycosyltransferase domain
(PDB 2BVM) in complex with the cosubstrate and a manganese ion, depicted as green sticks and a
sphere, respectively. Residues important for catalytic function are depicted as yellow sticks. Structures
of the (B) TcdA (PDB 3SRZ), (C) TcsL (PDB 2VKD), and (D) TcnA (PDB 2VK9) glycosyltransferase
domains. The membrane localization domain (MLD) is colored aqua.

TABLE 9 Sequence identity and similarity of LCT glycosyltransferase domains

LCT

% sequence identity (% similarity)a

TcdA TcdB TcsH TcsL TcnA
TcdB 51 (72)
TcsH 85 (92) 51 (73)
TcsL 53 (73) 76 (88) 55 (75)
TcnA 34 (53) 34 (54) 34 (52) 36 (54)
TpeL 46 (66) 44 (65) 46 (67) 48 (66) 34 (57)
aSequence identity and similarity were calculated using Water (EMBOSS) local alignment. LCTs are from the
following strains: C. difficile VPI 10463, P. sordellii VPI9048, C. novyi 19402, and C. perfringens JGS1495. Under new
subtyping analysis, TcdA and TcdB from C. difficile VPI 10463 are referred to as TcdA1 and TcdB1 (138).

Orrell and Melnyk Microbiology and Molecular Biology Reviews

September 2021 Volume 85 Issue 3 e00064-21 mmbr.asm.org 20

https://www.ncbi.nlm.nih.gov/Structure/pdb/2BVM
https://www.ncbi.nlm.nih.gov/Structure/pdb/3SRZ
https://www.ncbi.nlm.nih.gov/Structure/pdb/2VKD
https://www.ncbi.nlm.nih.gov/Structure/pdb/2VK9
https://mmbr.asm.org


the “arborizing” cytopathic effect, and cell rounding without protrusions (253). TcdA,
TcnA, and TcdB subtypes B1 and B2 have been reported to induce the arborizing cyto-
pathic effect, while TcsL and TcdB subtypes B3, B4, and B7 have been reported to
induce cell rounding without protrusions (110, 138, 253, 254). It is not yet clear why
some LCTs induce the arborizing phenotype, although altered specificity for GTPases
has been proposed (138, 253, 254).

It is well established that TcdA and TcdB induce an inflammatory response in intes-
tinal epithelial cells (239). In the context of CDI, inflammation may be both beneficial
as a host defense mechanism for pathogen eradication and harmful if the inflamma-
tory response is prolonged and uncontrolled (255, 256). There are conflicting reports
on the requirement for glycosyltransferase activity in the TcdA- and TcdB-induced
inflammatory response (229, 239, 257–259). In myeloid cells, glycosylation of RhoA by
TcdA and TcdB has been correlated with the activation of the pyrin inflammasome, a
multimeric protein complex that activates procascapse-1, which then activates proin-
flammatory cytokines, such as interleukin-1b (IL-1b) and IL-18 (258, 260, 261).
Activation of the pyrin inflammasome can lead to pyroptosis, a caspase-1-dependent
cell death that is highly inflammatory and characterized by cell swelling and lysis (258,
262, 263). A recent report by Saavedra et al. provided evidence that the pyrin inflam-
masome does not have a role in TcdA/TcdB-induced killing of mouse intestinal epithe-
lial cells, due to the absence of pyrin expression (264). The role of TcdA/TcdB-induced
activation of the pyrin inflammasome in human intestinal epithelial cells has yet to be
investigated. Interestingly, TcsL has been reported to induce an anti-inflammatory
response to inactivation of Ras proteins (45). To the best of our knowledge, it is not
known whether TpeL, TcnA, and TcsH induce an inflammatory response.

NEWLY IDENTIFIED LCT HOMOLOGUES

The recent identification of hundreds of LCT homologues (199) has opened up a
new avenue of LCT research and has provided a novel lens for understanding toxin
structure and function. As detailed in this review, LCTs were first identified in context
of disease and defined by their toxicity to humans at low doses. The genomics-driven
identification of hundreds of LCT homologues has reversed the paradigm of LCT dis-
covery, as bioinformatically identified homologues are identified on the basis of
sequence similarity alone. It is not known if LCT homologues are involved in disease
processes or what the ecological function of homologues may be.

On the basis of their frequent co-occurrence with virulence and mobile genes and
presence in pathogenic bacteria, recently identified LCT homologues have been
hypothesized to be putative toxins (199). Notably, the majority of recently identified
LCT homologues are present in nonclostridial species that are directly pathogenic to
insects (i.e., Pseudomonas, Photorhabdus, and Yersinia) or in species that, due to plant
growth-promoting properties, may be pathogenic to insects or other plant pathogens,
such as nematodes (199). Interestingly, as reported by Mansfield and Doxey (265) and
Contreras et al. (266), numerous links to insects have also been made for botulinum
neurotoxin homologues. The significance and evolutionary implications of LCT

TABLE 10 LCT-mediated glycosylation of Rho and Ras GTPases and correlated cellular
effectsa

LCT Cytopathic effect Cytotoxic effect Pyroptosis
TcdA Rho GTPases (Rac) (289) Rho GTPases (290) RhoA (260)
TcdB Rho GTPases (Rac) (291) Rho GTPases (RhoA) (292) RhoA (258)
TcsL Rho GTPases (Rac) (250, 293) Ras GTPases ([H/K/N]-Ras) (250) ND
TcsH Rho GTPases (221, 286) Rho GTPases (221, 286) ND
TcnA Rho GTPases (221, 287) Rho GTPases (221, 287) ND
TpeL Rho GTPases (Rac) (223) Ras GTPases (189) ND
aThe following strains are used for each LCT: VPI10463 (TcdA, TcdB); VPI 9048 (TcsL); VPI 9048 (TcsH); 590 (TcnA);
MC18 (TpeL). ND, not determined.
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homologues—and more broadly, bacterial toxins—targeting insects and other plant
pathogens is unclear. It may be suggested that human-targeted LCTs evolved from
insect-targeting homologues and/or that LCTs pose a selective advantage to clostridia
in the environment.

CONCLUDING REMARKS AND FUTURE DIRECTIONS

Through decades of work spanning the fields of clinical and veterinary medicine,
microbiology, biochemistry, and structural biology, LCTs have emerged as some of the
deadliest poisons of humans and animals. While members of the LCT family share
many similar features, including sequence homology and general mechanism of
action, LCTs also have distinct clinical and molecular features. Recent work has demon-
strated that sequence variation in TcdA and TcdB across different C. difficile strains
results in toxin subtypes with different functional and immunological activities, war-
ranting the creation of a toxin subtyping system. C. difficile toxin subtyping is directly
relevant for diagnostic and therapeutic development and should be used to guide the
use of toxin-mediated treatments, such as bezlotoxumab, in the clinic. It remains to be
determined whether sequence variation exists in other LCTs across clostridial strains
and, if so, whether sequence variations result in toxins with different biological and
functional activities.

A clearer picture of LCT-mediated infection is emerging, particularly for TcdA, TcdB,
and TcsL; the roles in virulence of TcnA, TpeL, and TcsH remain less well defined.
Although great strides have been made in LCT structure and function, a detailed mech-
anistic understanding of LCT intoxication is still elusive. Central to understanding LCT
intoxication is identifying the receptors LCTs bind to mediate cell surface attachment
and internalization and the GTPases LCTs target. The additional layer of complexity
that also must be addressed is how the difference in receptor engagement and sub-
strate specificity between LCTs and toxin subtypes contributes to differences in toxin-
mediated pathology and disease progression. Perhaps the greatest challenge is deter-
mining how LCTs translocate their glycosyltransferase and cysteine protease domain
across the endosomal membrane and into the cytosol. Based on conserved sequence
features in membrane-inserting regions, it seems likely that the mechanism of translo-
cation is highly similar among LCTs and subtypes. Additional work is required to gain a
deeper and more precise understanding of the enigmatic mechanism of translocation.

Genomics has expanded the LCT family from six proteins to several hundred, thus
establishing a new frontier in LCT research. Characterization and determination of the recep-
tors that homologues engage and the intracellular substrates they modify—and by extension,
the organisms they target—remain difficult. Elucidating the function of LCT homologues, par-
ticularly in their native environment, will clarify their ecological roles and potential adaptive
value in bacteria. Importantly, homologues also hold clues to how LCTs evolved to become
deadly human poisons and may lead us closer to identifying the ancestral LCT toxin.
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